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What makes different?

There is no supervisor, only a reward signal
Feedback is delayed, not instantaneous
Time really matters (sequential, non i.i.d data)

Agent’s actions affect the subsequent data it
receives




Goal:
Maximize Cumulative Reward

e Actions may have long term consequences
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Agent & Enviroment
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Markov Processes
Markov Reward Processes

Markov Decision Processes

MARKOV DECISION PROCESS



Markov Process
Example: Student Markov Chain




Markov Reward Processes
Example: Student MRP




Markov Decision Process

Example: Student MDP
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Markov Decision Process(MDP)

S : finite set of states (observations) _,
A : finite set of actions

P : transition probability
R :immediate reward

y :discount factor

Goal :
— Choose policy t
— Maximize expected return : Ri= Z Ty

=t




Dynamic Programming
Monte-Carlo
Temporal-Difference

Q-Learning

HOW TO SOLVE MDP



Model-based

* Dynamic Programming
— Evaluate policy

— Update policy

V(S:) < E, [Rivr +7V(Se41)]
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Right: A simple Gridworld solved with a
Dynamic Programming. Very exciting. Head
over to the GridWorld: DP demo to play with
the GridWorld environment and policy iteration.




Model Free

* Unknown Transition Probability & Reward
* MCvsTD

Monte-Carlo Backup

V(St) «+ V(S:) + (G — V(5:))
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Temporal-Difference Backup

V(Se) « V(S:) + a(Rep1 +7V(St41) — V(S:))




Model Free:
Q-learning

Instead of tabular
optimal action-value function (Q-learning)

— Q (s,a) = max,;[f[R|s; =s.a; =a,7]
Bellman equation

Q' (s,a) =y |r+ymaxQ (s.a')ls.a

¥

Basic idea : iterative update (lack of generalization)

In practical : function approximator O(s,a;0)=Q" (s,a)
e Linear?
e Using DNN |



LETTER

Human-level control through deep reinforcement
learning
Volodymyr Mnih'*, Koray Kavukcuoglu'*, David Silver'*, Andrei A. Rusu', Joel Veness', Marc G. Bellemare!, Alex Graves',

Martin Riedmiller', Andreas K. Fjdjelandl. Georg Ostrovski', Stig Petersen', Charles Beattie', Amir Sadik', loannis .-"mmnng]c:ul,
Helen King', Dharshan Kumaran', Daan Wierstra', Shane Legg' & Demis Hassabis

doi:10.1038/nature 14236

DEEP Q-NETWORK (DQN)



Video

* https://www.youtube.com/watch?v=LJ40Cb6
u7kk



https://www.youtube.com/watch?v=LJ4oCb6u7kk

Deep Q-Network

 compute Q-values for all actions

Convolution Convolution Fully connected Fully connected
e v - w

Full-connected 512 nodes
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.\ Output a node for each action
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Convolves 32 filters of 8x8 with stride 4
Convolves 64 filters of 4x4 with stride 2
Convolves 64 filters of 3x3 with stride 1
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Update DQN

e Loss function

Li(0;) =Hs.ar [([Es’ yls.a] — Q(s,a; Hf)ﬂ
— "ffs,n,r,s" [(,V _ Q(S,ﬁ; HI))Z} + [ES«HJ’ [\/ﬂf [yﬂ

e Gradient

Vo.L(0;) =Wsars !(r +7 max ¢ (s’,n’: 0 ) —O(s.a: !'JI-)) Vi, O(s.a; !‘Jf}]




Two Technique

* Experience Replay
— Experience
— Pooled Meref — (Sf: g Ty Sp + l)

. Datz?1 efﬂuencY (D, = {ey,....e;} |
* Avoid correlation between samples (variance between
batches)

* Off —policy is suitable for Q-learning
— Random sampled mini-batch

¢« On-policy SARSA policy being carried out by the Fast but weak
agent
Off-policy DQN optimal policy independently of  Slow but robust

the agent's actions



DEMO
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Reinforcement Learning



Gorila (GOogle Relnforcement Learning Architecture)
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Massively Parallel Methods for Deep Reinforcement Learning

5 Arun Nair
arXiv:1507.04296

Parallel acting: generate new interactions
Distributed replay memory: save interactions

Paralle! learning: compute gradients from replayed interactions

Yy ¥ ¥

Distributed neural network: update network from gradients



DDPG (Deterministic Policy Gradient)

 DDAC (Deep Deterministic Actor-Critic)

¥ Continuous control with deep reinforcement learning
Timothy P. Lillicrap
arXiv:1509.02971



https://goo.gl/J4PIAz

Double Q-learning

Y, = Ry +ymax Q(Si41,0:67).

Y;DUUHEQE Rit1 + vQ(Si+1,argmax Q(Sit1,a;0;); E';) -




Policy Distillation
e Soft target

B Freeway MWPong B Q*bert

:

124%

125% -

-

5%

e

25%

|
Multi-DOM Multi-Dist=-MNLL Multi-Dist-KL
Agents (same network size)

Percent of Teacher (DQN) Score

Figure 3: Performance of multi-task agents with identical network architecture and size, relative to respective
single-task DON teachers. A detailed results table 15 given in Appendix B



Dueling Network

VALUE ADVANTAGE VALUE ADVANTAGE

Figure 2: See, attend and drive: Value and advantage saliency maps on the Enduro game for a

trained dueling architecture. The value stream learns to pay attention to the road. The advantage
stream learns to pay attention only when there are cars immediately in front, so as to avoid collisions.


https://goo.gl/FNHCTD
https://goo.gl/FNHCTD

Multiagent

Evolution of Q-value
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The agents manage to hit the ball a few times per round.


https://www.youtube.com/watch?v=Gb9DprIgdGw&index=1&list=PLfLv_F3r0TwyaZPe50OOUx8tRf0HwdR_u
https://www.youtube.com/watch?v=Gb9DprIgdGw&index=1&list=PLfLv_F3r0TwyaZPe50OOUx8tRf0HwdR_u

