Introduction to Deep Reinforcement Learning

Yen-Chen Wu 2015/12/11

Outline

- Reinforcement Learning
- Markov Decision Process
- How to Solve MDPs
 - DP
 - MC
 - TD
 - Q-learning (DQN)
- Paper Review

REINFORCEMENT LEARNING

Branches of Machine Learning

What makes different?

- There is no supervisor, only a reward signal
- Feedback is delayed, not instantaneous
- Time really matters (sequential, non i.i.d data)
- Agent's actions affect the subsequent data it

receives

Goal:

Maximize Cumulative Reward

- Actions may have long term consequences
- Reward may be delayed
- It may be a to gain me

Agent & Enviroment

Markov Processes

Markov Reward Processes

Markov Decision Processes

MARKOV DECISION PROCESS

Markov Process

Example: Student Markov Chain

Markov Reward Processes

Example: Student MRP

Markov Decision Process

Example: Student MDP

Markov Decision Process(MDP)

- S : finite set of states (observations)
- A : finite set of actions
- P : transition probability
- R : immediate reward
- γ : discount factor

- Goal :
 - Choose policy π
 - Maximize expected return : $R_t = \sum \gamma^{t'-t} r_{t'}$

Dynamic Programming

Monte-Carlo

Temporal-Difference

Q-Learning

HOW TO SOLVE MDP

Model-based

- Dynamic Programming
 - Evaluate policy
 - Update policy

Dynamic Programming Backup

 $V(S_{\iota}) \leftarrow \mathbb{E}_{\pi} \left[\mathsf{R}_{\iota+1} + \gamma V(S_{\iota+1}) \right]$

0.22	0.25 F*	0.27 F*	0.30 F	0.34 F*	0.38	0.34 • 1	0.30	0.34 F	0.38
0.25	0.27	0.30	0.34	0.38	0.42	0.38	0.34 ↔	0.38	0.42
0.2					0.46				0.46
0.20	0.22 F*	0.25	-0.78		0.52	0.57	0.64	0.57	0.52 •7
0.22 F*	0.25 5*	0.27	0.25 •		0.08	-0.36	0.71	0.64	0.57
0.25 F	0.27 5*	0.30	0.27		1.20	0.08	0.79	-0.29	0.52
0.27 F*	0.30 f*	0.34	0.30		1.0	0.97	0.87	-0.21	0.57
0.31 F	0.34 F*	0.38	-0.58		-0.0	-0.1	0.7	0.71	0.64
0.34	0.38	0.42	0.46	0.52	0.57	0.64	0.7	0.65	0.53
0.3 Ł	0.34	0.38	0.42	0.48	0.52	0.5%	0.64	0.53	0.53

Right: A simple Gridworld solved with a Dynamic Programming. Very exciting. Head over to the GridWorld: DP demo to play with the GridWorld environment and policy iteration.

Model Free

- Unknown Transition Probability & Reward
- MC vs TD

Model Free: Q-learning

- Instead of tabular
- optimal action-value function (Q-learning)

$$Q^*(s,a) = \max_{\pi} \mathbb{E}[R_t|s_t = s, a_t = a, \pi]$$

Bellman equation

$$Q^*(s,a) = \mathbb{E}_{s'}\left[r + \gamma \max_{a'} Q^*(s',a')|s,a\right]$$

 $Q(s,a;\theta) \approx Q^*(s,a)$

- Basic idea : iterative update (lack of generalization)
- In practical : function approximator
 - Linear ?
 - Using DNN !

doi:10.1038/nature14236

Human-level control through deep reinforcement learning

Volodymyr Mnih¹*, Koray Kavukcuoglu¹*, David Silver¹*, Andrei A. Rusu¹, Joel Veness¹, Marc G. Bellemare¹, Alex Graves¹, Martin Riedmiller¹, Andreas K. Fidjeland¹, Georg Ostrovski¹, Stig Petersen¹, Charles Beattie¹, Amir Sadik¹, Ioannis Antonoglou¹, Helen King¹, Dharshan Kumaran¹, Daan Wierstra¹, Shane Legg¹ & Demis Hassabis¹

DEEP Q-NETWORK (DQN)

L.F.'T''

ER

Video

 https://www.youtube.com/watch?v=LJ4oCb6 u7kk

Deep Q-Network

compute Q-values for all actions

Update DQN

Loss function

$$L_{i}(\theta_{i}) = \mathbb{E}_{s,a,r} \left[\left(\mathbb{E}_{s'} [y|s,a] - Q(s,a;\theta_{i}) \right)^{2} \right]$$
$$= \mathbb{E}_{s,a,r,s'} \left[\left(y - Q(s,a;\theta_{i}) \right)^{2} \right] + \mathbb{E}_{s,a,r} \left[\mathbb{V}_{s'} [y] \right]$$

Gradient

$$\nabla_{\theta_i} L(\theta_i) = \mathbb{E}_{s,a,r,s'} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right) \nabla_{\theta_i} Q(s,a;\theta_i) \right]$$

Two Technique

- Experience Replay
 - Experience
 - Pooled Mer $e_t = (s_t, a_t, r_t, s_{t+1})$
 - Data efficiency ($D_t = \{e_1, \dots, e_t\}$
 - Avoid correlation between samples (variance between batches)
 - Off –policy is suitable for Q-learning
 - Random sampled mini-batch

		Example	Learn the value of	Pros & Cons		
•	On-policy	SARSA	policy being carried out by the agent	Fast but weak		
	Off-policy	DQN	optimal policy independently of the agent's actions	Slow but robust		

DEMO

PAPER REVIEW

Paper list

- Massively Parallel Methods for Deep Reinforcement Learning
- Continuous control with deep reinforcement learning
- Deep Reinforcement Learning with Double Q-learning
- Policy Distillation
- Dueling Network Architectures for Deep Reinforcement Learning
- Multiagent Cooperation and Competition with Deep Reinforcement Learning

Gorila (GOogle ReInforcement Learning Architecture)

- er Arun Nair
 - arXiv:1507.04296
- Parallel acting: generate new interactions
- Distributed replay memory: save interactions
- Parallel learning: compute gradients from replayed interactions
- Distributed neural network: update network from gradients

DDPG (Deterministic Policy Gradient)

• DDAC (Deep Deterministic Actor-Critic)

Double Q-learning

$$Y_t^{\text{DQN}} \equiv R_{t+1} + \gamma \max_a Q(S_{t+1}, a; \boldsymbol{\theta}_t^-) .$$
$$Y_t^{\text{DoubleQ}} \equiv R_{t+1} + \gamma Q(S_{t+1}, \operatorname*{argmax}_a Q(S_{t+1}, a; \boldsymbol{\theta}_t); \boldsymbol{\theta}_t') .$$

Policy Distillation

• Soft target

Figure 3: Performance of multi-task agents with identical network architecture and size, relative to respective single-task DQN teachers. A detailed results table is given in Appendix B

Dueling Network

Figure 2: See, attend and drive: Value and advantage saliency maps on the Enduro game for a trained dueling architecture. The value stream learns to pay attention to the road. The advantage stream learns to pay attention only when there are cars immediately in front, so as to avoid collisions.

Multiagent

The agents manage to hit the ball a few times per round.